Formal Uncertainty and Dispersion of Single and Double Difference Models for GNSS-Based Attitude Determination

نویسندگان

  • Wen Chen
  • Chao Yu
  • Danan Dong
  • MiaoMiao Cai
  • Feng Zhou
  • Zhiren Wang
  • Lei Zhang
  • Zhengqi Zheng
چکیده

With multi-antenna synchronized global navigation satellite system (GNSS) receivers, the single difference (SD) between two antennas is able to eliminate both satellite and receiver clock error, thus it becomes necessary to reconsider the equivalency problem between the SD and double difference (DD) models. In this paper, we quantitatively compared the formal uncertainties and dispersions between multiple SD models and the DD model, and also carried out static and kinematic short baseline experiments. The theoretical and experimental results show that under a non-common clock scheme the SD and DD model are equivalent. Under a common clock scheme, if we estimate stochastic uncalibrated phase delay (UPD) parameters every epoch, this SD model is still equivalent to the DD model, but if we estimate only one UPD parameter for all epochs or take it as a known constant, the SD (here called SD2) and DD models are no longer equivalent. For the vertical component of baseline solutions, the formal uncertainties of the SD2 model are two times smaller than those of the DD model, and the dispersions of the SD2 model are even more than twice smaller than those of the DD model. In addition, to obtain baseline solutions, the SD2 model requires a minimum of three satellites, while the DD model requires a minimum of four satellites, which makes the SD2 more advantageous in attitude determination under sheltered environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attitude determination with low-cost GPS/ INS

Low-cost GNSS receivers with patch antennas track the carrier phases of the GNSS signals with millimeterto centimeter-level accuracy. However, code multipath of several tens of metres, frequent half cycle slips, and receiver clock offsets in the order of milliseconds make reliable kinematic integer ambiguity resolution still challenging. Low-cost inertial sensors are robust against GNSS signal ...

متن کامل

Gnss Based Attitude Determination Systems for Nanosatellites

Attitude determination systems based on global navigation satellite systems (GNSSs) present several advantages, most of all, for very small satellites. GNSS receivers have low power consumption, limited mass, small volume, and are relatively inexpensive. However, if the attitude information is extracted from the relative position between two or more GNSS antennas placed on the nanosatellite, du...

متن کامل

The Inertial Attitude Augmentation for Ambiguity Resolution in SF/SE-GNSS Attitude Determination

The Unaided Single Frequency/Single Epoch Global Navigation Satellite System (SF/SE GNSS) model is the most challenging scenario for ambiguity resolution in the GNSS attitude determination application. To improve the performance of SF/SE-GNSS ambiguity resolution without excessive cost, the Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS-IMU) is a proper choice for the auxiliary...

متن کامل

Testing of a new single-frequency GNSS carrier phase attitude determination method: land, ship and aircraft experiments

Global navigation satellite system (GNSS) ambiguity resolution is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of improving significantly on the precision of the remaining GNSS model parameters. In this contribution, we consider the problem of ambiguit...

متن کامل

Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms

GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017